一:HashMap的定义和构造函数

1
2
3
public class HashMap<K,V>
extends AbstractMap<K,V>
implements Map<K,V>, Cloneable, Serializable

HashMap继承自AbstractMap,AbstractMap是Map接口的骨干实现,AbstractMap中实现了Map中最重要最常用和方法,这样HashMap继承AbstractMap就不需要实现Map的所有方法,让HashMap减少了大量的工作。
而在这里仍然实现Map结构,没有什么作用,应该是为了让map的层次结构更加清晰
HashMap有两个参数影响其性能:初始容量和加载因子。默认初始容量是16,加载因子是0.75。容量是哈希表中桶(Entry数组)的数量,初始容量只是哈希表在创建时的容量。加载因子是哈希表在其容量自动增加之前可以达到多满的一种尺度。当哈希表中的条目数超出了加载因子与当前容量的乘积时,通过调用 rehash 方法将容量翻倍。

HashMap中定义的成员变量如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
/**
* The default initial capacity - MUST be a power of two.
*/
static final int DEFAULT_INITIAL_CAPACITY = 16;// 默认初始容量为16,必须为2的幂
/**
* The maximum capacity, used if a higher value is implicitly specified
* by either of the constructors with arguments.
* MUST be a power of two <= 1<<30.
*/
static final int MAXIMUM_CAPACITY = 1 << 30;// 最大容量为2的30次方
/**
* The load factor used when none specified in constructor.
*/
static final float DEFAULT_LOAD_FACTOR = 0.75f;// 默认加载因子0.75
/**
* The table, resized as necessary. Length MUST Always be a power of two.
*/
transient Entry<K,V>[] table;// Entry数组,哈希表,长度必须为2的幂
/**
* The number of key-value mappings contained in this map.
*/
transient int size;// 已存元素的个数
/**
* The next size value at which to resize (capacity * load factor).
* @serial
*/
int threshold;// 下次扩容的临界值,size>=threshold就会扩容,扩容临界点(容量和加载因子的乘积)
/**
* The load factor for the hash table.
*
* @serial
*/
final float loadFactor;// 加载因子

HashMap的四个构造函数

public HashMap():构造一个具有默认初始容量 (16) 和默认加载因子 (0.75) 的空 HashMap
public HashMap(int initialCapacity):构造一个带指定初始容量和默认加载因子 (0.75) 的空 HashMap
public HashMap(int initialCapacity, float loadFactor):构造一个带指定初始容量和加载因子的空 HashMap
public HashMap(Map< ? extends K, ? extends V> m):构造一个映射关系与指定 Map 相同的新 HashMap

这里有两个很重要的参数:initialCapacity(初始容量)、loadFactor(加载因子),看看JDK中的解释:
HashMap 的实例有两个参数影响其性能:初始容量 和加载因子。
容量 :是哈希表中桶的数量,初始容量只是哈希表在创建时的容量,实际上就是Entry< K,V>[] table的容量
加载因子 :是哈希表在其容量自动增加之前可以达到多满的一种尺度。它衡量的是一个散列表的空间的使用程度,负载因子越大表示散列表的装填程度越高,反之愈小。对于使用链表法的散列表来说,查找一个元素的平均时间是O(1+a),因此如果负载因子越大,对空间的利用更充分,然而后果是查找效率的降低;如果负载因子太小,那么散列表的数据将过于稀疏,对空间造成严重浪费。系统默认负载因子为0.75,一般情况下我们是无需修改的。
当哈希表中的条目数超出了加载因子与当前容量的乘积时,则要对该哈希表进行 rehash 操作(即重建内部数据结构),从而哈希表将具有大约两倍的桶数

二:HashMap的数据结构

我们知道在Java中最常用的两种结构是数组和模拟指针(引用),几乎所有的数据结构都可以利用这两种来组合实现,HashMap也是如此。实际上HashMap是一个“链表散列”,如下是它数据结构:
数据结构

从上图我们可以看出HashMap底层实现还是数组,只是数组的每一项都是一条链。其中参数initialCapacity就代表了该数组的长度。下面为HashMap构造函数的源码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
public HashMap(int initialCapacity, float loadFactor) {
//容量不能小于0
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity);
//容量不能超出最大容量
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
//加载因子不能<=0 或者 为非数字
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
//计算出大于初始容量的最小 2的n次方作为哈希表table的长度,下面会说明为什么要这样
int capacity = 1;
while (capacity < initialCapacity)
capacity <<= 1;
this.loadFactor = loadFactor;
//设置HashMap的容量极限,当HashMap的容量达到该极限时就会进行扩容操作
threshold = (int)Math.min(capacity * loadFactor, MAXIMUM_CAPACITY + 1);
//创建Entry数组
table = new Entry[capacity];
useAltHashing = sun.misc.VM.isBooted() &&
(capacity >= Holder.ALTERNATIVE_HASHING_THRESHOLD);
init();
}

可以看到,这个构造函数主要做的事情就是:

  1. 对传入的 容量 和 加载因子进行判断处理
  2. 设置HashMap的容量极限
  3. 计算出大于初始容量的最小 2的n次方作为哈希表table的长度,然后用该长度创建Entry数组(table),这个是最核心的

可以发现,一个HashMap对应一个Entry数组,来看看Entry这个元素的内部结构:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
static class Entry<K,V> implements Map.Entry<K,V> {
final K key;
V value;
Entry<K,V> next;
int hash;
/**
* Creates new entry.
*/
Entry(int h, K k, V v, Entry<K,V> n) {
value = v;
next = n;
key = k;
hash = h;
}

Entry是HashMap的一个内部类,它也是维护着一个key-value映射关系,除了key和value,还有next引用(该引用指向当前table位置的链表),hash值(用来确定每一个Entry链表在table中位置)

三:HashMap的存储实现put(K,V)

HashMap中我们最长用的就是put(K, V)和get(K)。我们都知道,HashMap的K值是唯一的,那如何保证唯一性呢?我们首先想到的是用equals比较,没错,这样可以实现,但随着内部元素的增多,put和get的效率将越来越低,这里的时间复杂度是O(n),假如有1000个元素,put时最差情况需要比较1000次。实际上,HashMap很少会用到equals方法,因为其内通过一个哈希表管理所有元素,哈希是通过hash单词音译过来的,也可以称为散列表,哈希算法可以快速的存取元素,当我们调用put存值时,HashMap首先会调用K的hashCode方法,获取哈希码,通过哈希码快速找到某个存放位置,这个位置可以被称之为bucketIndex,但可能会存在多个元素找到了相同的bucketIndex,有个专业名词叫碰撞,当碰撞发生时,这时会取到bucketIndex位置已存储的元素,最终通过equals来比较,equals方法就是碰撞时才会执行的方法,所以前面说HashMap很少会用到equals。HashMap通过hashCode和equals最终判断出K是否已存在,如果已存在,则使用新V值替换旧V值,并返回旧V值,如果不存在 ,则存放新的键值对bucketIndex位置。文字描述有些乱,通过下面的流程图来梳理一下整个put过程。
3
现在我们知道,执行put方法后,最终HashMap的存储结构会有这三种情况,我们当然期望情形3是最少发生的(效率最低)。到目前为止,我们了解了两件事:

  • HashMap通过键的hashCode来快速的存取元素。
  • 当不同的对象发生碰撞时,HashMap通过单链表来解决,将新元素加入链表表头,通过next指向原有的元素。单链表在Java中的实现就是对象的引用(复合)。
    来鉴赏一下HashMap中put方法源码:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
public V put(K key, V value) {
//如果key为空的情况
if (key == null)
return putForNullKey(value);
//计算key的hash值
int hash = hash(key);
//计算该hash值在table中的下标
int i = indexFor(hash, table.length);
//对table[i]存放的链表进行遍历
for (Entry<K,V> e = table[i]; e != null; e = e.next) {
Object k;
//判断该条链上是否有hash值相同的(key相同)
//若存在相同,则直接覆盖value,返回旧value
if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}
//修改次数+1
modCount++;
//把当前key,value添加到table[i]的链表中
addEntry(hash, key, value, i);
return null;
}

从上面的过程中,我们起码可以发现两点:

1.如果为null,则调用putForNullKey:这就是为什么HashMap可以用null作为键的原因,来看看HashMap是如何处理null键的:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
private V putForNullKey(V value) {
//查找链表中是否有null键
for (Entry<K,V> e = table[0]; e != null; e = e.next) {
if (e.key == null) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}
modCount++;
//如果链中查找不到,则把该null键插入
addEntry(0, null, value, 0);
return null;
}
1
2
3
4
5
6
7
8
9
10
void addEntry(int hash, K key, V value, int bucketIndex) {
if ((size >= threshold) && (null != table[bucketIndex])) {
resize(2 * table.length);
//这一步就是对null的处理,如果key为null,hash值为0,也就是会插入到哈希表的表头table[0]的位置
hash = (null != key) ? hash(key) : 0;
bucketIndex = indexFor(hash, table.length);
}
createEntry(hash, key, value, bucketIndex);
}

2.如果链中存在该key,则用传入的value覆盖掉旧的value,同时把旧的value返回:这就是为什么HashMap不能有两个相同的key的原因

对于hash操作,最重要也是最困难的就是如何通过确定hash的位置,我们来看看HashMap的做法:
首先求得key的hash值:hash(key)

1
2
3
4
5
6
7
8
9
10
11
12
13
final int hash(Object k) {
int h = 0;
if (useAltHashing) {
if (k instanceof String) {
return sun.misc.Hashing.stringHash32((String) k);
}
h = hashSeed;
}
h ^= k.hashCode();
h ^= (h >>> 20) ^ (h >>> 12);
return h ^ (h >>> 7) ^ (h >>> 4);
}

这是一个数学计算,可以不用深入,关键是下面这里:
计算该hash值在table中的下标

1
2
3
static int indexFor(int h, int length) {
return h & (length-1);
}

对于HashMap的table而言,数据分布需要均匀(最好每项都只有一个元素,这样就可以直接找到),不能太紧也不能太松,太紧会导致查询速度慢,太松则浪费空间。计算hash值后,怎么才能保证table元素分布均与呢?我们会想到取模,但是由于取模的消耗较大,而HashMap是通过&运算符(按位与操作)来实现的:h & (length-1)

在构造函数中存在:capacity <<= 1,这样做总是能够保证HashMap的底层数组长度为2的n次方。当length为2的n次方时,h&(length - 1)就相当于对length取模,而且速度比直接取模快得多,这是HashMap在速度上的一个优化。至于为什么是2的n次方下面解释。
我们回到indexFor方法,该方法仅有一条语句:h&(length - 1),这句话除了上面的取模运算外还有一个非常重要的责任:均匀分布table数据和充分利用空间。
这里我们假设length为16(2^n)和15,h为5、6、7。

1

当length-1 = 14时,6和7的结果一样,这样表示他们在table存储的位置是相同的,也就是产生了碰撞,6、7就会在一个位置形成链表,这样就会导致查询速度降低详细地看看当length-1 = 14 时的情况:
2

可以看到,这样发生发生的碰撞是非常多的,1,3,5,7,9,11,13都没有存放数据,空间减少,进一步增加碰撞几率,这样就会导致查询速度慢,
分析一下:当length-1 = 14时,二进制的最后一位是0,在&操作时,一个为0,无论另一个为1还是0,最终&操作结果都是0,这就造成了结果的二进制的最后一位都是0,这就导致了所有数据都存储在2的倍数位上,所以说,所以说当length = 2^n时,不同的hash值发生碰撞的概率比较小,这样就会使得数据在table数组中分布较均匀,查询速度也较快。
  
然后我们来看看计算了hash值,并用该hash值来求得哈希表中的索引值之后,如何把该key-value插入到该索引的链表中:
调用 addEntry(hash, key, value, i) 方法:
  

1
2
3
4
5
6
7
8
9
10
void addEntry(int hash, K key, V value, int bucketIndex) {
//如果size大于极限容量,将要进行重建内部数据结构操作,之后的容量是原来的两倍,并且重新设置hash值和hash值在table中的索引值
if ((size >= threshold) && (null != table[bucketIndex])) {
resize(2 * table.length);
hash = (null != key) ? hash(key) : 0;
bucketIndex = indexFor(hash, table.length);
}
//真正创建Entry节点的操作
createEntry(hash, key, value, bucketIndex);
}

1
2
3
4
5
void createEntry(int hash, K key, V value, int bucketIndex) {
Entry<K,V> e = table[bucketIndex];
table[bucketIndex] = new Entry<>(hash, key, value, e);
size++;
}

首先取得bucketIndex位置的Entry头结点,并创建新节点,把该新节点插入到链表中的头部,该新节点的next指针指向原来的头结点
  
这里有两点需要注意:
一、链的产生
这是一个非常优雅的设计。系统总是将新的Entry对象添加到bucketIndex处。如果bucketIndex处已经有了对象,那么新添加的Entry对象将指向原有的Entry对象,形成一条Entry链,但是若bucketIndex处没有Entry对象,也就是e==null,那么新添加的Entry对象指向null,也就不会产生Entry链了。
二、扩容问题
还记得HashMap中的一个变量吗,threshold,这是容器的容量极限,还有一个变量size,这是指HashMap中键值对的数量,也就是node的数量

1
threshold = (int)Math.min(capacity * loadFactor, MAXIMUM_CAPACITY + 1);

什么时候发生扩容?
当不断添加key-value,size大于了容量极限threshold时,会发生扩容
如何扩容?
扩容发生在resize方法中,也就是扩大数组(桶)的数量,如何扩容参考:http://blog.csdn.net/jeffleo/article/details/63684953

我们重新来理一下存储的步骤:

  1. 传入key和value,判断key是否为null,如果为null,则调用putForNullKey,以null作为key存储到哈希表中;
  2. 然后计算key的hash值,根据hash值搜索在哈希表table中的索引位置,若当前索引位置不为null,则对该位置的Entry链表进行遍历,如果链中存在该key,则用传入的value覆盖掉旧的value,同时把旧的value返回,结束;
  3. 否则调用addEntry,用key-value创建一个新的节点,并把该节点插入到该索引对应的链表的头部

四:HashMap的读取实现get(key,value)

1
2
3
4
5
6
7
8
9
public V get(Object key) {
//如果key为null,求null键
if (key == null)
return getForNullKey();
// 用该key求得entry
Entry<K,V> entry = getEntry(key);
return null == entry ? null : entry.getValue();
}
1
2
3
4
5
6
7
8
9
10
11
12
final Entry<K,V> getEntry(Object key) {
int hash = (key == null) ? 0 : hash(key);
for (Entry<K,V> e = table[indexFor(hash, table.length)];
e != null;
e = e.next) {
Object k;
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
}
return null;
}

读取的步骤比较简单,调用hash(key)求得key的hash值,然后调用indexFor(hash)求得hash值对应的table的索引位置,然后遍历索引位置的链表,如果存在key,则把key对应的Entry返回,否则返回null

五:HashMap键的遍历,keySet()

HashMap遍历的核心代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
private abstract class HashIterator<E> implements Iterator<E> {
Entry<K,V> next; // next entry to return
int expectedModCount; // For fast-fail
int index; // current slot
Entry<K,V> current; // current entry
//当调用keySet().iterator()时,调用此代码
HashIterator() {
expectedModCount = modCount;
if (size > 0) { // advance to first entry
Entry[] t = table;
//从哈希表数组从上到下,查找第一个不为null的节点,并把next引用指向该节点
while (index < t.length && (next = t[index++]) == null)
;
}
}
public final boolean hasNext() {
return next != null;
}
//当调用next时,会调用此代码
final Entry<K,V> nextEntry() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
Entry<K,V> e = next;
if (e == null)
throw new NoSuchElementException();
//如果当前节点的下一个节点为null,从节点处罚往下查找哈希表,找到第一个不为null的节点
if ((next = e.next) == null) {
Entry[] t = table;
while (index < t.length && (next = t[index++]) == null)
;
}
current = e;
return e;
}
public void remove() {
if (current == null)
throw new IllegalStateException();
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
Object k = current.key;
current = null;
HashMap.this.removeEntryForKey(k);
expectedModCount = modCount;
}
}

从这里可以看出,HashMap遍历时,按哈希表的每一个索引的链表从上往下遍历,由于HashMap的存储规则,最晚添加的节点都有可能在第一个索引的链表中,这就造成了HashMap的遍历时无序的。

参考:
http://blog.csdn.net/jeffleo/article/details/54946424
http://blog.csdn.net/ghsau/article/details/16843543
http://blog.csdn.net/ghsau/article/details/16890151